Function:
(defun s4vec-resor (x y) (declare (xargs :guard (and (s4vec-p x) (s4vec-p y)))) (let ((__function__ 's4vec-resor)) (declare (ignorable __function__)) (b* (((s4vec x)) ((s4vec y))) (s4vec (sparseint-bitor x.upper y.upper) (sparseint-bitor (sparseint-bitand x.lower x.upper) (sparseint-bitor (sparseint-bitand y.lower y.upper) (sparseint-bitand x.lower y.lower)))))))
Theorem:
(defthm s4vec-p-of-s4vec-resor (b* ((resor (s4vec-resor x y))) (s4vec-p resor)) :rule-classes :rewrite)
Theorem:
(defthm s4vec-resor-correct (b* ((?resor (s4vec-resor x y))) (equal (s4vec->4vec resor) (4vec-resor (s4vec->4vec x) (s4vec->4vec y)))))
Theorem:
(defthm s4vec-resor-of-s4vec-fix-x (equal (s4vec-resor (s4vec-fix x) y) (s4vec-resor x y)))
Theorem:
(defthm s4vec-resor-s4vec-equiv-congruence-on-x (implies (s4vec-equiv x x-equiv) (equal (s4vec-resor x y) (s4vec-resor x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm s4vec-resor-of-s4vec-fix-y (equal (s4vec-resor x (s4vec-fix y)) (s4vec-resor x y)))
Theorem:
(defthm s4vec-resor-s4vec-equiv-congruence-on-y (implies (s4vec-equiv y y-equiv) (equal (s4vec-resor x y) (s4vec-resor x y-equiv))) :rule-classes :congruence)