(s4vec-2vec-p x) → *
Function:
(defun s4vec-2vec-p$inline (x) (declare (xargs :guard (s4vec-p x))) (let ((__function__ 's4vec-2vec-p)) (declare (ignorable __function__)) (mbe :logic (b* (((s4vec x))) (sparseint-equal x.upper x.lower)) :exec (or (atom x) (not (cdr x)) (sparseint-equal (car x) (cdr x))))))
Theorem:
(defthm s4vec-2vec-p$inline-of-s4vec-fix-x (equal (s4vec-2vec-p$inline (s4vec-fix x)) (s4vec-2vec-p$inline x)))
Theorem:
(defthm s4vec-2vec-p$inline-s4vec-equiv-congruence-on-x (implies (s4vec-equiv x x-equiv) (equal (s4vec-2vec-p$inline x) (s4vec-2vec-p$inline x-equiv))) :rule-classes :congruence)