Function:
(defun s3vec-reduction-and (x) (declare (xargs :guard (s4vec-p x))) (let ((__function__ 's3vec-reduction-and)) (declare (ignorable __function__)) (if-s2vec-p (x) (s2vec (int-to-sparseint (bool->vec (sparseint-equal (s2vec->val x) -1)))) (b* (((s4vec x))) (s4vec (int-to-sparseint (bool->vec (sparseint-equal x.upper -1))) (int-to-sparseint (bool->vec (sparseint-equal x.lower -1))))))))
Theorem:
(defthm s4vec-p-of-s3vec-reduction-and (b* ((res (s3vec-reduction-and x))) (s4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm s3vec-reduction-and-correct (b* ((?res (s3vec-reduction-and x))) (equal (s4vec->4vec res) (3vec-reduction-and (s4vec->4vec x)))))
Theorem:
(defthm s3vec-reduction-and-of-s4vec-fix-x (equal (s3vec-reduction-and (s4vec-fix x)) (s3vec-reduction-and x)))
Theorem:
(defthm s3vec-reduction-and-s4vec-equiv-congruence-on-x (implies (s4vec-equiv x x-equiv) (equal (s3vec-reduction-and x) (s3vec-reduction-and x-equiv))) :rule-classes :congruence)