Basic equivalence relation for envmap structures.
Function:
(defun envmap-equiv$inline (x y) (declare (xargs :guard (and (envmap-p x) (envmap-p y)))) (equal (envmap-fix x) (envmap-fix y)))
Theorem:
(defthm envmap-equiv-is-an-equivalence (and (booleanp (envmap-equiv x y)) (envmap-equiv x x) (implies (envmap-equiv x y) (envmap-equiv y x)) (implies (and (envmap-equiv x y) (envmap-equiv y z)) (envmap-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm envmap-equiv-implies-equal-envmap-fix-1 (implies (envmap-equiv x x-equiv) (equal (envmap-fix x) (envmap-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm envmap-fix-under-envmap-equiv (envmap-equiv (envmap-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-envmap-fix-1-forward-to-envmap-equiv (implies (equal (envmap-fix x) y) (envmap-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-envmap-fix-2-forward-to-envmap-equiv (implies (equal x (envmap-fix y)) (envmap-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm envmap-equiv-of-envmap-fix-1-forward (implies (envmap-equiv (envmap-fix x) y) (envmap-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm envmap-equiv-of-envmap-fix-2-forward (implies (envmap-equiv x (envmap-fix y)) (envmap-equiv x y)) :rule-classes :forward-chaining)