Basic equivalence relation for svtv-overridelines structures.
Function:
(defun svtv-overridelines-equiv$inline (x y) (declare (xargs :guard (and (svtv-overridelines-p x) (svtv-overridelines-p y)))) (equal (svtv-overridelines-fix x) (svtv-overridelines-fix y)))
Theorem:
(defthm svtv-overridelines-equiv-is-an-equivalence (and (booleanp (svtv-overridelines-equiv x y)) (svtv-overridelines-equiv x x) (implies (svtv-overridelines-equiv x y) (svtv-overridelines-equiv y x)) (implies (and (svtv-overridelines-equiv x y) (svtv-overridelines-equiv y z)) (svtv-overridelines-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svtv-overridelines-equiv-implies-equal-svtv-overridelines-fix-1 (implies (svtv-overridelines-equiv x x-equiv) (equal (svtv-overridelines-fix x) (svtv-overridelines-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svtv-overridelines-fix-under-svtv-overridelines-equiv (svtv-overridelines-equiv (svtv-overridelines-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svtv-overridelines-fix-1-forward-to-svtv-overridelines-equiv (implies (equal (svtv-overridelines-fix x) y) (svtv-overridelines-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svtv-overridelines-fix-2-forward-to-svtv-overridelines-equiv (implies (equal x (svtv-overridelines-fix y)) (svtv-overridelines-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-overridelines-equiv-of-svtv-overridelines-fix-1-forward (implies (svtv-overridelines-equiv (svtv-overridelines-fix x) y) (svtv-overridelines-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-overridelines-equiv-of-svtv-overridelines-fix-2-forward (implies (svtv-overridelines-equiv x (svtv-overridelines-fix y)) (svtv-overridelines-equiv x y)) :rule-classes :forward-chaining)