(svtv-baseentry-svex ent) → expr
Function:
(defun svtv-baseentry-svex (ent) (declare (xargs :guard (svtv-baseentry-p ent))) (let ((__function__ 'svtv-baseentry-svex)) (declare (ignorable __function__)) (b* ((ent (svtv-baseentry-fix ent))) (cond ((4vec-p ent) (svex-quote ent)) ((eq ent 'x) (svex-quote (4vec-x))) ((eq ent :ones) (svex-quote -1)) (t (svex-var ent))))))
Theorem:
(defthm svex-p-of-svtv-baseentry-svex (b* ((expr (svtv-baseentry-svex ent))) (svex-p expr)) :rule-classes :rewrite)
Theorem:
(defthm svtv-baseentry-svex-of-svtv-baseentry-fix-ent (equal (svtv-baseentry-svex (svtv-baseentry-fix ent)) (svtv-baseentry-svex ent)))
Theorem:
(defthm svtv-baseentry-svex-svtv-baseentry-equiv-congruence-on-ent (implies (svtv-baseentry-equiv ent ent-equiv) (equal (svtv-baseentry-svex ent) (svtv-baseentry-svex ent-equiv))) :rule-classes :congruence)