Function:
(defun lhssvex-bounded-p (w x) (declare (xargs :guard (and (natp w) (svex-p x)))) (let ((__function__ 'lhssvex-bounded-p)) (declare (ignorable __function__)) (lhssvex-range-p 0 w x)))
Theorem:
(defthm lhssvex-bounded-p-of-nfix-w (equal (lhssvex-bounded-p (nfix w) x) (lhssvex-bounded-p w x)))
Theorem:
(defthm lhssvex-bounded-p-nat-equiv-congruence-on-w (implies (nat-equiv w w-equiv) (equal (lhssvex-bounded-p w x) (lhssvex-bounded-p w-equiv x))) :rule-classes :congruence)
Theorem:
(defthm lhssvex-bounded-p-of-svex-fix-x (equal (lhssvex-bounded-p w (svex-fix x)) (lhssvex-bounded-p w x)))
Theorem:
(defthm lhssvex-bounded-p-svex-equiv-congruence-on-x (implies (svex-equiv x x-equiv) (equal (lhssvex-bounded-p w x) (lhssvex-bounded-p w x-equiv))) :rule-classes :congruence)