Basic equivalence relation for attributes structures.
Function:
(defun attributes-equiv$inline (x y) (declare (xargs :guard (and (attributes-p x) (attributes-p y)))) (equal (attributes-fix x) (attributes-fix y)))
Theorem:
(defthm attributes-equiv-is-an-equivalence (and (booleanp (attributes-equiv x y)) (attributes-equiv x x) (implies (attributes-equiv x y) (attributes-equiv y x)) (implies (and (attributes-equiv x y) (attributes-equiv y z)) (attributes-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm attributes-equiv-implies-equal-attributes-fix-1 (implies (attributes-equiv x x-equiv) (equal (attributes-fix x) (attributes-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm attributes-fix-under-attributes-equiv (attributes-equiv (attributes-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-attributes-fix-1-forward-to-attributes-equiv (implies (equal (attributes-fix x) y) (attributes-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-attributes-fix-2-forward-to-attributes-equiv (implies (equal x (attributes-fix y)) (attributes-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm attributes-equiv-of-attributes-fix-1-forward (implies (attributes-equiv (attributes-fix x) y) (attributes-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm attributes-equiv-of-attributes-fix-2-forward (implies (attributes-equiv x (attributes-fix y)) (attributes-equiv x y)) :rule-classes :forward-chaining)