(lhs-addr-p x) → *
Function:
(defun lhs-addr-p (x) (declare (xargs :guard (lhs-p x))) (let ((__function__ 'lhs-addr-p)) (declare (ignorable __function__)) (mbe :logic (svarlist-addr-p (lhs-vars x)) :exec (if (atom x) t (and (lhatom-addr-p (lhrange->atom (car x))) (lhs-addr-p (cdr x)))))))
Theorem:
(defthm lhs-addr-p-of-lhs-fix-x (equal (lhs-addr-p (lhs-fix x)) (lhs-addr-p x)))
Theorem:
(defthm lhs-addr-p-lhs-equiv-congruence-on-x (implies (lhs-equiv x x-equiv) (equal (lhs-addr-p x) (lhs-addr-p x-equiv))) :rule-classes :congruence)