Recognizer for svjumpstate structures.
(svjumpstate-p x) → *
Function:
(defun svjumpstate-p (x) (declare (xargs :guard t)) (let ((__function__ 'svjumpstate-p)) (declare (ignorable __function__)) (and (mbe :logic (and (alistp x) (equal (strip-cars x) '(constraints breakcond breakst continuecond continuest returncond returnst))) :exec (fty::alist-with-carsp x '(constraints breakcond breakst continuecond continuest returncond returnst))) (b* ((constraints (cdr (std::da-nth 0 x))) (breakcond (cdr (std::da-nth 1 x))) (breakst (cdr (std::da-nth 2 x))) (continuecond (cdr (std::da-nth 3 x))) (continuest (cdr (std::da-nth 4 x))) (returncond (cdr (std::da-nth 5 x))) (returnst (cdr (std::da-nth 6 x)))) (and (constraintlist-p constraints) (svex-p breakcond) (svstate-p breakst) (svex-p continuecond) (svstate-p continuest) (svex-p returncond) (svstate-p returnst))))))
Theorem:
(defthm consp-when-svjumpstate-p (implies (svjumpstate-p x) (consp x)) :rule-classes :compound-recognizer)