Get the mds field from a param.
(param->mds x) → fty::x.name
This is an ordinary field accessor created by fty::defprod.
Function:
(defun param->mds$inline (x) (declare (xargs :guard (paramp x))) (declare (xargs :guard t)) (let ((__function__ 'param->mds)) (declare (ignorable __function__)) (mbe :logic (b* ((x (and t x)) (prime (prime-fix (cdr (std::da-nth 0 x)))) (rate (acl2::pos-fix (cdr (std::da-nth 1 x)))) (capacity (acl2::pos-fix (cdr (std::da-nth 2 x)))) (alpha (ifix (cdr (std::da-nth 3 x)))) (full-rounds-half (nfix (cdr (std::da-nth 4 x)))) (partial-rounds (nfix (cdr (std::da-nth 5 x)))) (constants (cdr (std::da-nth 6 x))) (mds (cdr (std::da-nth 7 x))) (rate-then-capacity-p (acl2::bool-fix (cdr (std::da-nth 8 x)))) (ascending-p (acl2::bool-fix (cdr (std::da-nth 9 x)))) (partial-first-p (acl2::bool-fix (cdr (std::da-nth 10 x))))) (if (and (fe-list-listp mds prime) (all-len-equal-p mds (+ rate capacity)) (equal (len mds) (+ rate capacity))) mds (repeat (+ rate capacity) (repeat (+ rate capacity) 0)))) :exec (cdr (std::da-nth 7 x)))))
Theorem:
(defthm param->mds$inline-of-param-fix-x (equal (param->mds$inline (param-fix x)) (param->mds$inline x)))
Theorem:
(defthm param->mds$inline-param-equiv-congruence-on-x (implies (param-equiv x x-equiv) (equal (param->mds$inline x) (param->mds$inline x-equiv))) :rule-classes :congruence)