Fixing function for proof-outcome structures.
(proof-outcome-fix x) → new-x
Function:
(defun proof-outcome-fix$inline (x) (declare (xargs :guard (proof-outcomep x))) (let ((__function__ 'proof-outcome-fix)) (declare (ignorable __function__)) (mbe :logic (case (proof-outcome-kind x) (:assertion (b* ((get (assertion-fix (std::da-nth 0 (cdr x))))) (cons :assertion (list get)))) (:fail (cons :fail (list))) (:error (cons :error (list)))) :exec x)))
Theorem:
(defthm proof-outcomep-of-proof-outcome-fix (b* ((new-x (proof-outcome-fix$inline x))) (proof-outcomep new-x)) :rule-classes :rewrite)
Theorem:
(defthm proof-outcome-fix-when-proof-outcomep (implies (proof-outcomep x) (equal (proof-outcome-fix x) x)))
Function:
(defun proof-outcome-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (proof-outcomep acl2::x) (proof-outcomep acl2::y)))) (equal (proof-outcome-fix acl2::x) (proof-outcome-fix acl2::y)))
Theorem:
(defthm proof-outcome-equiv-is-an-equivalence (and (booleanp (proof-outcome-equiv x y)) (proof-outcome-equiv x x) (implies (proof-outcome-equiv x y) (proof-outcome-equiv y x)) (implies (and (proof-outcome-equiv x y) (proof-outcome-equiv y z)) (proof-outcome-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm proof-outcome-equiv-implies-equal-proof-outcome-fix-1 (implies (proof-outcome-equiv acl2::x x-equiv) (equal (proof-outcome-fix acl2::x) (proof-outcome-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm proof-outcome-fix-under-proof-outcome-equiv (proof-outcome-equiv (proof-outcome-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-proof-outcome-fix-1-forward-to-proof-outcome-equiv (implies (equal (proof-outcome-fix acl2::x) acl2::y) (proof-outcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-proof-outcome-fix-2-forward-to-proof-outcome-equiv (implies (equal acl2::x (proof-outcome-fix acl2::y)) (proof-outcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm proof-outcome-equiv-of-proof-outcome-fix-1-forward (implies (proof-outcome-equiv (proof-outcome-fix acl2::x) acl2::y) (proof-outcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm proof-outcome-equiv-of-proof-outcome-fix-2-forward (implies (proof-outcome-equiv acl2::x (proof-outcome-fix acl2::y)) (proof-outcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm proof-outcome-kind$inline-of-proof-outcome-fix-x (equal (proof-outcome-kind$inline (proof-outcome-fix x)) (proof-outcome-kind$inline x)))
Theorem:
(defthm proof-outcome-kind$inline-proof-outcome-equiv-congruence-on-x (implies (proof-outcome-equiv x x-equiv) (equal (proof-outcome-kind$inline x) (proof-outcome-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-proof-outcome-fix (consp (proof-outcome-fix x)) :rule-classes :type-prescription)