Basic equivalence relation for assertion structures.
Function:
(defun assertion-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (assertionp acl2::x) (assertionp acl2::y)))) (equal (assertion-fix acl2::x) (assertion-fix acl2::y)))
Theorem:
(defthm assertion-equiv-is-an-equivalence (and (booleanp (assertion-equiv x y)) (assertion-equiv x x) (implies (assertion-equiv x y) (assertion-equiv y x)) (implies (and (assertion-equiv x y) (assertion-equiv y z)) (assertion-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm assertion-equiv-implies-equal-assertion-fix-1 (implies (assertion-equiv acl2::x x-equiv) (equal (assertion-fix acl2::x) (assertion-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm assertion-fix-under-assertion-equiv (assertion-equiv (assertion-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-assertion-fix-1-forward-to-assertion-equiv (implies (equal (assertion-fix acl2::x) acl2::y) (assertion-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-assertion-fix-2-forward-to-assertion-equiv (implies (equal acl2::x (assertion-fix acl2::y)) (assertion-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm assertion-equiv-of-assertion-fix-1-forward (implies (assertion-equiv (assertion-fix acl2::x) acl2::y) (assertion-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm assertion-equiv-of-assertion-fix-2-forward (implies (assertion-equiv acl2::x (assertion-fix acl2::y)) (assertion-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)