Abstract an
(abs-expression tree) → expr
Function:
(defun abs-expression (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-expression)) (declare (ignorable __function__)) (b* (((okf tree) (check-tree-nonleaf-1-1 tree "expression"))) (abs-addition-expression tree))))
Theorem:
(defthm expression-resultp-of-abs-expression (b* ((expr (abs-expression tree))) (expression-resultp expr)) :rule-classes :rewrite)
Theorem:
(defthm abs-expression-of-tree-fix-tree (equal (abs-expression (abnf::tree-fix tree)) (abs-expression tree)))
Theorem:
(defthm abs-expression-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-expression tree) (abs-expression tree-equiv))) :rule-classes :congruence)