Basic equivalence relation for lift-info structures.
Function:
(defun lift-info-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (lift-infop acl2::x) (lift-infop acl2::y)))) (equal (lift-info-fix acl2::x) (lift-info-fix acl2::y)))
Theorem:
(defthm lift-info-equiv-is-an-equivalence (and (booleanp (lift-info-equiv x y)) (lift-info-equiv x x) (implies (lift-info-equiv x y) (lift-info-equiv y x)) (implies (and (lift-info-equiv x y) (lift-info-equiv y z)) (lift-info-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm lift-info-equiv-implies-equal-lift-info-fix-1 (implies (lift-info-equiv acl2::x x-equiv) (equal (lift-info-fix acl2::x) (lift-info-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm lift-info-fix-under-lift-info-equiv (lift-info-equiv (lift-info-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-lift-info-fix-1-forward-to-lift-info-equiv (implies (equal (lift-info-fix acl2::x) acl2::y) (lift-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-lift-info-fix-2-forward-to-lift-info-equiv (implies (equal acl2::x (lift-info-fix acl2::y)) (lift-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm lift-info-equiv-of-lift-info-fix-1-forward (implies (lift-info-equiv (lift-info-fix acl2::x) acl2::y) (lift-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm lift-info-equiv-of-lift-info-fix-2-forward (implies (lift-info-equiv acl2::x (lift-info-fix acl2::y)) (lift-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)