Basic equivalence relation for aexp structures.
Function:
(defun aexp-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (aexpp acl2::x) (aexpp acl2::y)))) (equal (aexp-fix acl2::x) (aexp-fix acl2::y)))
Theorem:
(defthm aexp-equiv-is-an-equivalence (and (booleanp (aexp-equiv x y)) (aexp-equiv x x) (implies (aexp-equiv x y) (aexp-equiv y x)) (implies (and (aexp-equiv x y) (aexp-equiv y z)) (aexp-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm aexp-equiv-implies-equal-aexp-fix-1 (implies (aexp-equiv acl2::x x-equiv) (equal (aexp-fix acl2::x) (aexp-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm aexp-fix-under-aexp-equiv (aexp-equiv (aexp-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-aexp-fix-1-forward-to-aexp-equiv (implies (equal (aexp-fix acl2::x) acl2::y) (aexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-aexp-fix-2-forward-to-aexp-equiv (implies (equal acl2::x (aexp-fix acl2::y)) (aexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm aexp-equiv-of-aexp-fix-1-forward (implies (aexp-equiv (aexp-fix acl2::x) acl2::y) (aexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm aexp-equiv-of-aexp-fix-2-forward (implies (aexp-equiv acl2::x (aexp-fix acl2::y)) (aexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)