Fixing function for bexp structures.
Function:
(defun bexp-fix$inline (x) (declare (xargs :guard (bexpp x))) (let ((__function__ 'bexp-fix)) (declare (ignorable __function__)) (mbe :logic (case (bexp-kind x) (:const (b* ((value (acl2::bool-fix (std::da-nth 0 (cdr x))))) (cons :const (list value)))) (:equal (b* ((left (aexp-fix (std::da-nth 0 (cdr x)))) (right (aexp-fix (std::da-nth 1 (cdr x))))) (cons :equal (list left right)))) (:less (b* ((left (aexp-fix (std::da-nth 0 (cdr x)))) (right (aexp-fix (std::da-nth 1 (cdr x))))) (cons :less (list left right)))) (:not (b* ((arg (bexp-fix (std::da-nth 0 (cdr x))))) (cons :not (list arg)))) (:and (b* ((left (bexp-fix (std::da-nth 0 (cdr x)))) (right (bexp-fix (std::da-nth 1 (cdr x))))) (cons :and (list left right))))) :exec x)))
Theorem:
(defthm bexpp-of-bexp-fix (b* ((new-x (bexp-fix$inline x))) (bexpp new-x)) :rule-classes :rewrite)
Theorem:
(defthm bexp-fix-when-bexpp (implies (bexpp x) (equal (bexp-fix x) x)))
Function:
(defun bexp-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (bexpp acl2::x) (bexpp acl2::y)))) (equal (bexp-fix acl2::x) (bexp-fix acl2::y)))
Theorem:
(defthm bexp-equiv-is-an-equivalence (and (booleanp (bexp-equiv x y)) (bexp-equiv x x) (implies (bexp-equiv x y) (bexp-equiv y x)) (implies (and (bexp-equiv x y) (bexp-equiv y z)) (bexp-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm bexp-equiv-implies-equal-bexp-fix-1 (implies (bexp-equiv acl2::x x-equiv) (equal (bexp-fix acl2::x) (bexp-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm bexp-fix-under-bexp-equiv (bexp-equiv (bexp-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-bexp-fix-1-forward-to-bexp-equiv (implies (equal (bexp-fix acl2::x) acl2::y) (bexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-bexp-fix-2-forward-to-bexp-equiv (implies (equal acl2::x (bexp-fix acl2::y)) (bexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm bexp-equiv-of-bexp-fix-1-forward (implies (bexp-equiv (bexp-fix acl2::x) acl2::y) (bexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm bexp-equiv-of-bexp-fix-2-forward (implies (bexp-equiv acl2::x (bexp-fix acl2::y)) (bexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm bexp-kind$inline-of-bexp-fix-x (equal (bexp-kind$inline (bexp-fix x)) (bexp-kind$inline x)))
Theorem:
(defthm bexp-kind$inline-bexp-equiv-congruence-on-x (implies (bexp-equiv x x-equiv) (equal (bexp-kind$inline x) (bexp-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-bexp-fix (consp (bexp-fix x)) :rule-classes :type-prescription)