Accessor for values of type
(integer-from-sllong x) → y
Function:
(defun integer-from-sllong (x) (declare (xargs :guard (sllongp x))) (let ((__function__ 'integer-from-sllong)) (declare (ignorable __function__)) (mbe :logic (b* ((x (and t x))) (sllong-integer-fix (std::da-nth 0 (cdr x)))) :exec (std::da-nth 0 (cdr x)))))
Theorem:
(defthm sllong-integerp-of-integer-from-sllong (b* ((y (integer-from-sllong x))) (sllong-integerp y)) :rule-classes :rewrite)
Theorem:
(defthm sllong-from-integer-of-integer-from-sllong (equal (sllong-from-integer (integer-from-sllong x)) (sllong-fix x)))
Theorem:
(defthm integer-from-sllong-of-sllong-from-integer (equal (integer-from-sllong (sllong-from-integer get)) (sllong-integer-fix get)))
Theorem:
(defthm integer-from-sllong-upper-bound (<= (integer-from-sllong x) (sllong-max)) :rule-classes :linear)
Theorem:
(defthm integer-from-sllong-lower-bound (>= (integer-from-sllong x) (sllong-min)) :rule-classes :linear)
Theorem:
(defthm integer-from-sllong-of-sllong-fix-x (equal (integer-from-sllong (sllong-fix x)) (integer-from-sllong x)))
Theorem:
(defthm integer-from-sllong-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (integer-from-sllong x) (integer-from-sllong x-equiv))) :rule-classes :congruence)