Fixing function for ext-declon structures.
(ext-declon-fix x) → new-x
Function:
(defun ext-declon-fix$inline (x) (declare (xargs :guard (ext-declonp x))) (let ((__function__ 'ext-declon-fix)) (declare (ignorable __function__)) (mbe :logic (case (ext-declon-kind x) (:fundef (b* ((get (fundef-fix (std::da-nth 0 (cdr x))))) (cons :fundef (list get)))) (:fun-declon (b* ((get (fun-declon-fix (std::da-nth 0 (cdr x))))) (cons :fun-declon (list get)))) (:obj-declon (b* ((get (obj-declon-fix (std::da-nth 0 (cdr x))))) (cons :obj-declon (list get)))) (:tag-declon (b* ((get (tag-declon-fix (std::da-nth 0 (cdr x))))) (cons :tag-declon (list get))))) :exec x)))
Theorem:
(defthm ext-declonp-of-ext-declon-fix (b* ((new-x (ext-declon-fix$inline x))) (ext-declonp new-x)) :rule-classes :rewrite)
Theorem:
(defthm ext-declon-fix-when-ext-declonp (implies (ext-declonp x) (equal (ext-declon-fix x) x)))
Function:
(defun ext-declon-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (ext-declonp acl2::x) (ext-declonp acl2::y)))) (equal (ext-declon-fix acl2::x) (ext-declon-fix acl2::y)))
Theorem:
(defthm ext-declon-equiv-is-an-equivalence (and (booleanp (ext-declon-equiv x y)) (ext-declon-equiv x x) (implies (ext-declon-equiv x y) (ext-declon-equiv y x)) (implies (and (ext-declon-equiv x y) (ext-declon-equiv y z)) (ext-declon-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ext-declon-equiv-implies-equal-ext-declon-fix-1 (implies (ext-declon-equiv acl2::x x-equiv) (equal (ext-declon-fix acl2::x) (ext-declon-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ext-declon-fix-under-ext-declon-equiv (ext-declon-equiv (ext-declon-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ext-declon-fix-1-forward-to-ext-declon-equiv (implies (equal (ext-declon-fix acl2::x) acl2::y) (ext-declon-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ext-declon-fix-2-forward-to-ext-declon-equiv (implies (equal acl2::x (ext-declon-fix acl2::y)) (ext-declon-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ext-declon-equiv-of-ext-declon-fix-1-forward (implies (ext-declon-equiv (ext-declon-fix acl2::x) acl2::y) (ext-declon-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ext-declon-equiv-of-ext-declon-fix-2-forward (implies (ext-declon-equiv acl2::x (ext-declon-fix acl2::y)) (ext-declon-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ext-declon-kind$inline-of-ext-declon-fix-x (equal (ext-declon-kind$inline (ext-declon-fix x)) (ext-declon-kind$inline x)))
Theorem:
(defthm ext-declon-kind$inline-ext-declon-equiv-congruence-on-x (implies (ext-declon-equiv x x-equiv) (equal (ext-declon-kind$inline x) (ext-declon-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-ext-declon-fix (consp (ext-declon-fix x)) :rule-classes :type-prescription)