Basic equivalence relation for tyspecseq structures.
Function:
(defun tyspecseq-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (tyspecseqp acl2::x) (tyspecseqp acl2::y)))) (equal (tyspecseq-fix acl2::x) (tyspecseq-fix acl2::y)))
Theorem:
(defthm tyspecseq-equiv-is-an-equivalence (and (booleanp (tyspecseq-equiv x y)) (tyspecseq-equiv x x) (implies (tyspecseq-equiv x y) (tyspecseq-equiv y x)) (implies (and (tyspecseq-equiv x y) (tyspecseq-equiv y z)) (tyspecseq-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm tyspecseq-equiv-implies-equal-tyspecseq-fix-1 (implies (tyspecseq-equiv acl2::x x-equiv) (equal (tyspecseq-fix acl2::x) (tyspecseq-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm tyspecseq-fix-under-tyspecseq-equiv (tyspecseq-equiv (tyspecseq-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-tyspecseq-fix-1-forward-to-tyspecseq-equiv (implies (equal (tyspecseq-fix acl2::x) acl2::y) (tyspecseq-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-tyspecseq-fix-2-forward-to-tyspecseq-equiv (implies (equal acl2::x (tyspecseq-fix acl2::y)) (tyspecseq-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm tyspecseq-equiv-of-tyspecseq-fix-1-forward (implies (tyspecseq-equiv (tyspecseq-fix acl2::x) acl2::y) (tyspecseq-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm tyspecseq-equiv-of-tyspecseq-fix-2-forward (implies (tyspecseq-equiv acl2::x (tyspecseq-fix acl2::y)) (tyspecseq-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)