Basic equivalence relation for obj-declor structures.
Function:
(defun obj-declor-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (obj-declorp acl2::x) (obj-declorp acl2::y)))) (equal (obj-declor-fix acl2::x) (obj-declor-fix acl2::y)))
Theorem:
(defthm obj-declor-equiv-is-an-equivalence (and (booleanp (obj-declor-equiv x y)) (obj-declor-equiv x x) (implies (obj-declor-equiv x y) (obj-declor-equiv y x)) (implies (and (obj-declor-equiv x y) (obj-declor-equiv y z)) (obj-declor-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm obj-declor-equiv-implies-equal-obj-declor-fix-1 (implies (obj-declor-equiv acl2::x x-equiv) (equal (obj-declor-fix acl2::x) (obj-declor-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm obj-declor-fix-under-obj-declor-equiv (obj-declor-equiv (obj-declor-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-obj-declor-fix-1-forward-to-obj-declor-equiv (implies (equal (obj-declor-fix acl2::x) acl2::y) (obj-declor-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-obj-declor-fix-2-forward-to-obj-declor-equiv (implies (equal acl2::x (obj-declor-fix acl2::y)) (obj-declor-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm obj-declor-equiv-of-obj-declor-fix-1-forward (implies (obj-declor-equiv (obj-declor-fix acl2::x) acl2::y) (obj-declor-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm obj-declor-equiv-of-obj-declor-fix-2-forward (implies (obj-declor-equiv acl2::x (obj-declor-fix acl2::y)) (obj-declor-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)