Recognizer for ident-set.
(ident-setp x) → *
Function:
(defun ident-setp (x) (declare (xargs :guard t)) (if (atom x) (null x) (and (identp (car x)) (or (null (cdr x)) (and (consp (cdr x)) (acl2::fast-<< (car x) (cadr x)) (ident-setp (cdr x)))))))
Theorem:
(defthm booleanp-ofident-setp (booleanp (ident-setp x)))
Theorem:
(defthm setp-when-ident-setp (implies (ident-setp x) (setp x)) :rule-classes (:rewrite))
Theorem:
(defthm identp-of-head-when-ident-setp (implies (ident-setp x) (equal (identp (head x)) (not (emptyp x)))))
Theorem:
(defthm ident-setp-of-tail-when-ident-setp (implies (ident-setp x) (ident-setp (tail x))))
Theorem:
(defthm ident-setp-of-insert (equal (ident-setp (insert a x)) (and (identp a) (ident-setp (sfix x)))))
Theorem:
(defthm identp-when-in-ident-setp-binds-free-x (implies (and (in a x) (ident-setp x)) (identp a)))
Theorem:
(defthm not-in-ident-setp-when-not-identp (implies (and (ident-setp x) (not (identp a))) (not (in a x))))
Theorem:
(defthm ident-setp-of-union (equal (ident-setp (union x y)) (and (ident-setp (sfix x)) (ident-setp (sfix y)))))
Theorem:
(defthm ident-setp-of-intersect (implies (and (ident-setp x) (ident-setp y)) (ident-setp (intersect x y))))
Theorem:
(defthm ident-setp-of-difference (implies (ident-setp x) (ident-setp (difference x y))))
Theorem:
(defthm ident-setp-of-delete (implies (ident-setp x) (ident-setp (delete a x))))