Basic equivalence relation for hint-pair structures.
Function:
(defun hint-pair-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (hint-pair-p acl2::x) (hint-pair-p acl2::y)))) (equal (hint-pair-fix acl2::x) (hint-pair-fix acl2::y)))
Theorem:
(defthm hint-pair-equiv-is-an-equivalence (and (booleanp (hint-pair-equiv x y)) (hint-pair-equiv x x) (implies (hint-pair-equiv x y) (hint-pair-equiv y x)) (implies (and (hint-pair-equiv x y) (hint-pair-equiv y z)) (hint-pair-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm hint-pair-equiv-implies-equal-hint-pair-fix-1 (implies (hint-pair-equiv acl2::x x-equiv) (equal (hint-pair-fix acl2::x) (hint-pair-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm hint-pair-fix-under-hint-pair-equiv (hint-pair-equiv (hint-pair-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-hint-pair-fix-1-forward-to-hint-pair-equiv (implies (equal (hint-pair-fix acl2::x) acl2::y) (hint-pair-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-hint-pair-fix-2-forward-to-hint-pair-equiv (implies (equal acl2::x (hint-pair-fix acl2::y)) (hint-pair-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm hint-pair-equiv-of-hint-pair-fix-1-forward (implies (hint-pair-equiv (hint-pair-fix acl2::x) acl2::y) (hint-pair-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm hint-pair-equiv-of-hint-pair-fix-2-forward (implies (hint-pair-equiv acl2::x (hint-pair-fix acl2::y)) (hint-pair-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)