Basic equivalence relation for smtlink-hint structures.
Function:
(defun smtlink-hint-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (smtlink-hint-p acl2::x) (smtlink-hint-p acl2::y)))) (equal (smtlink-hint-fix acl2::x) (smtlink-hint-fix acl2::y)))
Theorem:
(defthm smtlink-hint-equiv-is-an-equivalence (and (booleanp (smtlink-hint-equiv x y)) (smtlink-hint-equiv x x) (implies (smtlink-hint-equiv x y) (smtlink-hint-equiv y x)) (implies (and (smtlink-hint-equiv x y) (smtlink-hint-equiv y z)) (smtlink-hint-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm smtlink-hint-equiv-implies-equal-smtlink-hint-fix-1 (implies (smtlink-hint-equiv acl2::x x-equiv) (equal (smtlink-hint-fix acl2::x) (smtlink-hint-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm smtlink-hint-fix-under-smtlink-hint-equiv (smtlink-hint-equiv (smtlink-hint-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-smtlink-hint-fix-1-forward-to-smtlink-hint-equiv (implies (equal (smtlink-hint-fix acl2::x) acl2::y) (smtlink-hint-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-smtlink-hint-fix-2-forward-to-smtlink-hint-equiv (implies (equal acl2::x (smtlink-hint-fix acl2::y)) (smtlink-hint-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm smtlink-hint-equiv-of-smtlink-hint-fix-1-forward (implies (smtlink-hint-equiv (smtlink-hint-fix acl2::x) acl2::y) (smtlink-hint-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm smtlink-hint-equiv-of-smtlink-hint-fix-2-forward (implies (smtlink-hint-equiv acl2::x (smtlink-hint-fix acl2::y)) (smtlink-hint-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)