Update the |X86ISA|::|OF| field of a rflagsbits bit structure.
(!rflagsbits->of of x) → new-x
Function:
(defun !rflagsbits->of$inline (of x) (declare (xargs :guard (and (bitp of) (rflagsbits-p x)))) (mbe :logic (b* ((of (mbe :logic (bfix of) :exec of)) (x (rflagsbits-fix x))) (part-install of x :width 1 :low 11)) :exec (the (unsigned-byte 32) (logior (the (unsigned-byte 32) (logand (the (unsigned-byte 32) x) (the (signed-byte 13) -2049))) (the (unsigned-byte 12) (ash (the (unsigned-byte 1) of) 11))))))
Theorem:
(defthm rflagsbits-p-of-!rflagsbits->of (b* ((new-x (!rflagsbits->of$inline of x))) (rflagsbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !rflagsbits->of$inline-of-bfix-of (equal (!rflagsbits->of$inline (bfix of) x) (!rflagsbits->of$inline of x)))
Theorem:
(defthm !rflagsbits->of$inline-bit-equiv-congruence-on-of (implies (bit-equiv of of-equiv) (equal (!rflagsbits->of$inline of x) (!rflagsbits->of$inline of-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !rflagsbits->of$inline-of-rflagsbits-fix-x (equal (!rflagsbits->of$inline of (rflagsbits-fix x)) (!rflagsbits->of$inline of x)))
Theorem:
(defthm !rflagsbits->of$inline-rflagsbits-equiv-congruence-on-x (implies (rflagsbits-equiv x x-equiv) (equal (!rflagsbits->of$inline of x) (!rflagsbits->of$inline of x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !rflagsbits->of-is-rflagsbits (equal (!rflagsbits->of of x) (change-rflagsbits x :of of)))
Theorem:
(defthm rflagsbits->of-of-!rflagsbits->of (b* ((?new-x (!rflagsbits->of$inline of x))) (equal (rflagsbits->of new-x) (bfix of))))
Theorem:
(defthm !rflagsbits->of-equiv-under-mask (b* ((?new-x (!rflagsbits->of$inline of x))) (rflagsbits-equiv-under-mask new-x x -2049)))