Access the |X86ISA|::|RES5| field of a rflagsbits bit structure.
(rflagsbits->res5 x) → res5
Function:
(defun rflagsbits->res5$inline (x) (declare (xargs :guard (rflagsbits-p x))) (mbe :logic (let ((x (rflagsbits-fix x))) (part-select x :low 22 :width 10)) :exec (the (unsigned-byte 10) (logand (the (unsigned-byte 10) 1023) (the (unsigned-byte 10) (ash (the (unsigned-byte 32) x) -22))))))
Theorem:
(defthm 10bits-p-of-rflagsbits->res5 (b* ((res5 (rflagsbits->res5$inline x))) (10bits-p res5)) :rule-classes :rewrite)
Theorem:
(defthm rflagsbits->res5$inline-of-rflagsbits-fix-x (equal (rflagsbits->res5$inline (rflagsbits-fix x)) (rflagsbits->res5$inline x)))
Theorem:
(defthm rflagsbits->res5$inline-rflagsbits-equiv-congruence-on-x (implies (rflagsbits-equiv x x-equiv) (equal (rflagsbits->res5$inline x) (rflagsbits->res5$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm rflagsbits->res5-of-rflagsbits (equal (rflagsbits->res5 (rflagsbits cf res1 pf res2 af res3 zf sf tf intf df of iopl nt res4 rf vm ac vif vip id res5)) (10bits-fix res5)))
Theorem:
(defthm rflagsbits->res5-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x rflagsbits-equiv-under-mask) (rflagsbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4290772992) 0)) (equal (rflagsbits->res5 x) (rflagsbits->res5 y))))