Access the |X86ISA|::|NT| field of a rflagsbits bit structure.
(rflagsbits->nt x) → nt
Function:
(defun rflagsbits->nt$inline (x) (declare (xargs :guard (rflagsbits-p x))) (mbe :logic (let ((x (rflagsbits-fix x))) (part-select x :low 14 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 18) (ash (the (unsigned-byte 32) x) -14))))))
Theorem:
(defthm bitp-of-rflagsbits->nt (b* ((nt (rflagsbits->nt$inline x))) (bitp nt)) :rule-classes :rewrite)
Theorem:
(defthm rflagsbits->nt$inline-of-rflagsbits-fix-x (equal (rflagsbits->nt$inline (rflagsbits-fix x)) (rflagsbits->nt$inline x)))
Theorem:
(defthm rflagsbits->nt$inline-rflagsbits-equiv-congruence-on-x (implies (rflagsbits-equiv x x-equiv) (equal (rflagsbits->nt$inline x) (rflagsbits->nt$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm rflagsbits->nt-of-rflagsbits (equal (rflagsbits->nt (rflagsbits cf res1 pf res2 af res3 zf sf tf intf df of iopl nt res4 rf vm ac vif vip id res5)) (bfix nt)))
Theorem:
(defthm rflagsbits->nt-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x rflagsbits-equiv-under-mask) (rflagsbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 16384) 0)) (equal (rflagsbits->nt x) (rflagsbits->nt y))))