Update the |X86ISA|::|INTF| field of a rflagsbits bit structure.
(!rflagsbits->intf intf x) → new-x
Function:
(defun !rflagsbits->intf$inline (intf x) (declare (xargs :guard (and (bitp intf) (rflagsbits-p x)))) (mbe :logic (b* ((intf (mbe :logic (bfix intf) :exec intf)) (x (rflagsbits-fix x))) (part-install intf x :width 1 :low 9)) :exec (the (unsigned-byte 32) (logior (the (unsigned-byte 32) (logand (the (unsigned-byte 32) x) (the (signed-byte 11) -513))) (the (unsigned-byte 10) (ash (the (unsigned-byte 1) intf) 9))))))
Theorem:
(defthm rflagsbits-p-of-!rflagsbits->intf (b* ((new-x (!rflagsbits->intf$inline intf x))) (rflagsbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !rflagsbits->intf$inline-of-bfix-intf (equal (!rflagsbits->intf$inline (bfix intf) x) (!rflagsbits->intf$inline intf x)))
Theorem:
(defthm !rflagsbits->intf$inline-bit-equiv-congruence-on-intf (implies (bit-equiv intf intf-equiv) (equal (!rflagsbits->intf$inline intf x) (!rflagsbits->intf$inline intf-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !rflagsbits->intf$inline-of-rflagsbits-fix-x (equal (!rflagsbits->intf$inline intf (rflagsbits-fix x)) (!rflagsbits->intf$inline intf x)))
Theorem:
(defthm !rflagsbits->intf$inline-rflagsbits-equiv-congruence-on-x (implies (rflagsbits-equiv x x-equiv) (equal (!rflagsbits->intf$inline intf x) (!rflagsbits->intf$inline intf x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !rflagsbits->intf-is-rflagsbits (equal (!rflagsbits->intf intf x) (change-rflagsbits x :intf intf)))
Theorem:
(defthm rflagsbits->intf-of-!rflagsbits->intf (b* ((?new-x (!rflagsbits->intf$inline intf x))) (equal (rflagsbits->intf new-x) (bfix intf))))
Theorem:
(defthm !rflagsbits->intf-equiv-under-mask (b* ((?new-x (!rflagsbits->intf$inline intf x))) (rflagsbits-equiv-under-mask new-x x -513)))