Access the |X86ISA|::|RC| field of a mxcsrbits bit structure.
(mxcsrbits->rc x) → rc
Function:
(defun mxcsrbits->rc$inline (x) (declare (xargs :guard (mxcsrbits-p x))) (mbe :logic (let ((x (mxcsrbits-fix x))) (part-select x :low 13 :width 2)) :exec (the (unsigned-byte 2) (logand (the (unsigned-byte 2) 3) (the (unsigned-byte 19) (ash (the (unsigned-byte 32) x) -13))))))
Theorem:
(defthm 2bits-p-of-mxcsrbits->rc (b* ((rc (mxcsrbits->rc$inline x))) (2bits-p rc)) :rule-classes :rewrite)
Theorem:
(defthm mxcsrbits->rc$inline-of-mxcsrbits-fix-x (equal (mxcsrbits->rc$inline (mxcsrbits-fix x)) (mxcsrbits->rc$inline x)))
Theorem:
(defthm mxcsrbits->rc$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (mxcsrbits->rc$inline x) (mxcsrbits->rc$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm mxcsrbits->rc-of-mxcsrbits (equal (mxcsrbits->rc (mxcsrbits ie de ze oe ue pe daz im dm zm om um pm rc ftz reserved)) (2bits-fix rc)))
Theorem:
(defthm mxcsrbits->rc-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x mxcsrbits-equiv-under-mask) (mxcsrbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 24576) 0)) (equal (mxcsrbits->rc x) (mxcsrbits->rc y))))