Access the |X86ISA|::|DE| field of a mxcsrbits bit structure.
(mxcsrbits->de x) → de
Function:
(defun mxcsrbits->de$inline (x) (declare (xargs :guard (mxcsrbits-p x))) (mbe :logic (let ((x (mxcsrbits-fix x))) (part-select x :low 1 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 31) (ash (the (unsigned-byte 32) x) -1))))))
Theorem:
(defthm bitp-of-mxcsrbits->de (b* ((de (mxcsrbits->de$inline x))) (bitp de)) :rule-classes :rewrite)
Theorem:
(defthm mxcsrbits->de$inline-of-mxcsrbits-fix-x (equal (mxcsrbits->de$inline (mxcsrbits-fix x)) (mxcsrbits->de$inline x)))
Theorem:
(defthm mxcsrbits->de$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (mxcsrbits->de$inline x) (mxcsrbits->de$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm mxcsrbits->de-of-mxcsrbits (equal (mxcsrbits->de (mxcsrbits ie de ze oe ue pe daz im dm zm om um pm rc ftz reserved)) (bfix de)))
Theorem:
(defthm mxcsrbits->de-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x mxcsrbits-equiv-under-mask) (mxcsrbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 2) 0)) (equal (mxcsrbits->de x) (mxcsrbits->de y))))