Update the |X86ISA|::|PM| field of a mxcsrbits bit structure.
(!mxcsrbits->pm pm x) → new-x
Function:
(defun !mxcsrbits->pm$inline (pm x) (declare (xargs :guard (and (bitp pm) (mxcsrbits-p x)))) (mbe :logic (b* ((pm (mbe :logic (bfix pm) :exec pm)) (x (mxcsrbits-fix x))) (part-install pm x :width 1 :low 12)) :exec (the (unsigned-byte 32) (logior (the (unsigned-byte 32) (logand (the (unsigned-byte 32) x) (the (signed-byte 14) -4097))) (the (unsigned-byte 13) (ash (the (unsigned-byte 1) pm) 12))))))
Theorem:
(defthm mxcsrbits-p-of-!mxcsrbits->pm (b* ((new-x (!mxcsrbits->pm$inline pm x))) (mxcsrbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !mxcsrbits->pm$inline-of-bfix-pm (equal (!mxcsrbits->pm$inline (bfix pm) x) (!mxcsrbits->pm$inline pm x)))
Theorem:
(defthm !mxcsrbits->pm$inline-bit-equiv-congruence-on-pm (implies (bit-equiv pm pm-equiv) (equal (!mxcsrbits->pm$inline pm x) (!mxcsrbits->pm$inline pm-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->pm$inline-of-mxcsrbits-fix-x (equal (!mxcsrbits->pm$inline pm (mxcsrbits-fix x)) (!mxcsrbits->pm$inline pm x)))
Theorem:
(defthm !mxcsrbits->pm$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (!mxcsrbits->pm$inline pm x) (!mxcsrbits->pm$inline pm x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->pm-is-mxcsrbits (equal (!mxcsrbits->pm pm x) (change-mxcsrbits x :pm pm)))
Theorem:
(defthm mxcsrbits->pm-of-!mxcsrbits->pm (b* ((?new-x (!mxcsrbits->pm$inline pm x))) (equal (mxcsrbits->pm new-x) (bfix pm))))
Theorem:
(defthm !mxcsrbits->pm-equiv-under-mask (b* ((?new-x (!mxcsrbits->pm$inline pm x))) (mxcsrbits-equiv-under-mask new-x x -4097)))