Semantics of the instructions with the
Function:
(defun exec64-op-32 (funct rd rs1 rs2 stat) (declare (xargs :guard (and (op-32-funct-p funct) (ubyte5p rd) (ubyte5p rs1) (ubyte5p rs2) (state64p stat)))) (let ((__function__ 'exec64-op-32)) (declare (ignorable __function__)) (op-32-funct-case funct :addw (exec64-addw rd rs1 rs2 stat) :subw (exec64-subw rd rs1 rs2 stat) :sllw (exec64-sllw rd rs1 rs2 stat) :srlw (exec64-srlw rd rs1 rs2 stat) :sraw (exec64-sraw rd rs1 rs2 stat) :mulw (exec64-mulw rd rs1 rs2 stat) :divw (exec64-divw rd rs1 rs2 stat) :divuw (exec64-divuw rd rs1 rs2 stat) :remw (exec64-remw rd rs1 rs2 stat) :remuw (exec64-remuw rd rs1 rs2 stat))))
Theorem:
(defthm state64p-of-exec64-op-32 (b* ((new-stat (exec64-op-32 funct rd rs1 rs2 stat))) (state64p new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec64-op-32-of-op-32-funct-fix-funct (equal (exec64-op-32 (op-32-funct-fix funct) rd rs1 rs2 stat) (exec64-op-32 funct rd rs1 rs2 stat)))
Theorem:
(defthm exec64-op-32-op-32-funct-equiv-congruence-on-funct (implies (op-32-funct-equiv funct funct-equiv) (equal (exec64-op-32 funct rd rs1 rs2 stat) (exec64-op-32 funct-equiv rd rs1 rs2 stat))) :rule-classes :congruence)
Theorem:
(defthm exec64-op-32-of-ubyte5-fix-rd (equal (exec64-op-32 funct (ubyte5-fix rd) rs1 rs2 stat) (exec64-op-32 funct rd rs1 rs2 stat)))
Theorem:
(defthm exec64-op-32-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec64-op-32 funct rd rs1 rs2 stat) (exec64-op-32 funct rd-equiv rs1 rs2 stat))) :rule-classes :congruence)
Theorem:
(defthm exec64-op-32-of-ubyte5-fix-rs1 (equal (exec64-op-32 funct rd (ubyte5-fix rs1) rs2 stat) (exec64-op-32 funct rd rs1 rs2 stat)))
Theorem:
(defthm exec64-op-32-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec64-op-32 funct rd rs1 rs2 stat) (exec64-op-32 funct rd rs1-equiv rs2 stat))) :rule-classes :congruence)
Theorem:
(defthm exec64-op-32-of-ubyte5-fix-rs2 (equal (exec64-op-32 funct rd rs1 (ubyte5-fix rs2) stat) (exec64-op-32 funct rd rs1 rs2 stat)))
Theorem:
(defthm exec64-op-32-ubyte5-equiv-congruence-on-rs2 (implies (ubyte5-equiv rs2 rs2-equiv) (equal (exec64-op-32 funct rd rs1 rs2 stat) (exec64-op-32 funct rd rs1 rs2-equiv stat))) :rule-classes :congruence)
Theorem:
(defthm exec64-op-32-of-state64-fix-stat (equal (exec64-op-32 funct rd rs1 rs2 (state64-fix stat)) (exec64-op-32 funct rd rs1 rs2 stat)))
Theorem:
(defthm exec64-op-32-state64-equiv-congruence-on-stat (implies (state64-equiv stat stat-equiv) (equal (exec64-op-32 funct rd rs1 rs2 stat) (exec64-op-32 funct rd rs1 rs2 stat-equiv))) :rule-classes :congruence)