Semantics of the
We calculate the effective address.
We read an unsigned 8-bit integer from the effective address,
which is also implicitly zero-extended to 32 bits.
We write the result to
Function:
(defun exec32-lbu (rd rs1 imm stat) (declare (xargs :guard (and (ubyte5p rd) (ubyte5p rs1) (ubyte12p imm) (state32p stat)))) (let ((__function__ 'exec32-lbu)) (declare (ignorable __function__)) (b* ((addr (eff32-addr rs1 imm stat)) (result (read32-mem-ubyte8 addr stat)) (stat (write32-xreg rd result stat)) (stat (inc32-pc stat))) stat)))
Theorem:
(defthm state32p-of-exec32-lbu (b* ((new-stat (exec32-lbu rd rs1 imm stat))) (state32p new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec32-lbu-of-ubyte5-fix-rd (equal (exec32-lbu (ubyte5-fix rd) rs1 imm stat) (exec32-lbu rd rs1 imm stat)))
Theorem:
(defthm exec32-lbu-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec32-lbu rd rs1 imm stat) (exec32-lbu rd-equiv rs1 imm stat))) :rule-classes :congruence)
Theorem:
(defthm exec32-lbu-of-ubyte5-fix-rs1 (equal (exec32-lbu rd (ubyte5-fix rs1) imm stat) (exec32-lbu rd rs1 imm stat)))
Theorem:
(defthm exec32-lbu-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec32-lbu rd rs1 imm stat) (exec32-lbu rd rs1-equiv imm stat))) :rule-classes :congruence)
Theorem:
(defthm exec32-lbu-of-ubyte12-fix-imm (equal (exec32-lbu rd rs1 (ubyte12-fix imm) stat) (exec32-lbu rd rs1 imm stat)))
Theorem:
(defthm exec32-lbu-ubyte12-equiv-congruence-on-imm (implies (acl2::ubyte12-equiv imm imm-equiv) (equal (exec32-lbu rd rs1 imm stat) (exec32-lbu rd rs1 imm-equiv stat))) :rule-classes :congruence)
Theorem:
(defthm exec32-lbu-of-state32-fix-stat (equal (exec32-lbu rd rs1 imm (state32-fix stat)) (exec32-lbu rd rs1 imm stat)))
Theorem:
(defthm exec32-lbu-state32-equiv-congruence-on-stat (implies (state32-equiv stat stat-equiv) (equal (exec32-lbu rd rs1 imm stat) (exec32-lbu rd rs1 imm stat-equiv))) :rule-classes :congruence)