Basic equivalence relation for state64 structures.
Function:
(defun state64-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (state64p acl2::x) (state64p acl2::y)))) (equal (state64-fix acl2::x) (state64-fix acl2::y)))
Theorem:
(defthm state64-equiv-is-an-equivalence (and (booleanp (state64-equiv x y)) (state64-equiv x x) (implies (state64-equiv x y) (state64-equiv y x)) (implies (and (state64-equiv x y) (state64-equiv y z)) (state64-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm state64-equiv-implies-equal-state64-fix-1 (implies (state64-equiv acl2::x x-equiv) (equal (state64-fix acl2::x) (state64-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm state64-fix-under-state64-equiv (state64-equiv (state64-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-state64-fix-1-forward-to-state64-equiv (implies (equal (state64-fix acl2::x) acl2::y) (state64-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-state64-fix-2-forward-to-state64-equiv (implies (equal acl2::x (state64-fix acl2::y)) (state64-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm state64-equiv-of-state64-fix-1-forward (implies (state64-equiv (state64-fix acl2::x) acl2::y) (state64-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm state64-equiv-of-state64-fix-2-forward (implies (state64-equiv acl2::x (state64-fix acl2::y)) (state64-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)