Basic equivalence relation for instr structures.
Function:
(defun instr-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (instrp acl2::x) (instrp acl2::y)))) (equal (instr-fix acl2::x) (instr-fix acl2::y)))
Theorem:
(defthm instr-equiv-is-an-equivalence (and (booleanp (instr-equiv x y)) (instr-equiv x x) (implies (instr-equiv x y) (instr-equiv y x)) (implies (and (instr-equiv x y) (instr-equiv y z)) (instr-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm instr-equiv-implies-equal-instr-fix-1 (implies (instr-equiv acl2::x x-equiv) (equal (instr-fix acl2::x) (instr-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm instr-fix-under-instr-equiv (instr-equiv (instr-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-instr-fix-1-forward-to-instr-equiv (implies (equal (instr-fix acl2::x) acl2::y) (instr-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-instr-fix-2-forward-to-instr-equiv (implies (equal acl2::x (instr-fix acl2::y)) (instr-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm instr-equiv-of-instr-fix-1-forward (implies (instr-equiv (instr-fix acl2::x) acl2::y) (instr-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm instr-equiv-of-instr-fix-2-forward (implies (instr-equiv acl2::x (instr-fix acl2::y)) (instr-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)