Basic theorems about stringp, generated by std::deflist.
Theorem:
(defthm stringp-of-cons (equal (stringp (cons acl2::a acl2::x)) (and (symbolp acl2::a) (stringp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-cdr-when-stringp (implies (stringp (double-rewrite acl2::x)) (stringp (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-when-not-consp (implies (not (consp acl2::x)) (equal (stringp acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbolp-of-car-when-stringp (implies (stringp acl2::x) (iff (symbolp (car acl2::x)) (consp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-stringp-compound-recognizer (implies (stringp acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm stringp-of-list-fix (implies (stringp acl2::x) (stringp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-sfix (iff (stringp (sfix acl2::x)) (or (stringp acl2::x) (not (setp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-insert (iff (stringp (insert acl2::a acl2::x)) (and (stringp (sfix acl2::x)) (symbolp acl2::a))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-delete (implies (stringp acl2::x) (stringp (delete acl2::k acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-mergesort (iff (stringp (mergesort acl2::x)) (stringp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-union (iff (stringp (union acl2::x acl2::y)) (and (stringp (sfix acl2::x)) (stringp (sfix acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-intersect-1 (implies (stringp acl2::x) (stringp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-intersect-2 (implies (stringp acl2::y) (stringp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-difference (implies (stringp acl2::x) (stringp (difference acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-duplicated-members (implies (stringp acl2::x) (stringp (duplicated-members acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-rev (equal (stringp (rev acl2::x)) (stringp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-append (equal (stringp (append acl2::a acl2::b)) (and (stringp (list-fix acl2::a)) (stringp acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-rcons (iff (stringp (rcons acl2::a acl2::x)) (and (symbolp acl2::a) (stringp (list-fix acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbolp-when-member-equal-of-stringp (and (implies (and (member-equal acl2::a acl2::x) (stringp acl2::x)) (symbolp acl2::a)) (implies (and (stringp acl2::x) (member-equal acl2::a acl2::x)) (symbolp acl2::a))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-when-subsetp-equal (and (implies (and (subsetp-equal acl2::x acl2::y) (stringp acl2::y)) (equal (stringp acl2::x) (true-listp acl2::x))) (implies (and (stringp acl2::y) (subsetp-equal acl2::x acl2::y)) (equal (stringp acl2::x) (true-listp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-set-difference-equal (implies (stringp acl2::x) (stringp (set-difference-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-intersection-equal-1 (implies (stringp (double-rewrite acl2::x)) (stringp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-intersection-equal-2 (implies (stringp (double-rewrite acl2::y)) (stringp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-union-equal (equal (stringp (union-equal acl2::x acl2::y)) (and (stringp (list-fix acl2::x)) (stringp (double-rewrite acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-take (implies (stringp (double-rewrite acl2::x)) (iff (stringp (take acl2::n acl2::x)) (or (symbolp nil) (<= (nfix acl2::n) (len acl2::x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-repeat (iff (stringp (repeat acl2::n acl2::x)) (or (symbolp acl2::x) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm symbolp-of-nth-when-stringp (implies (stringp acl2::x) (iff (symbolp (nth acl2::n acl2::x)) (< (nfix acl2::n) (len acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-update-nth (implies (stringp (double-rewrite acl2::x)) (iff (stringp (update-nth acl2::n acl2::y acl2::x)) (and (symbolp acl2::y) (or (<= (nfix acl2::n) (len acl2::x)) (symbolp nil))))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-butlast (implies (stringp (double-rewrite acl2::x)) (stringp (butlast acl2::x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-nthcdr (implies (stringp (double-rewrite acl2::x)) (stringp (nthcdr acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-last (implies (stringp (double-rewrite acl2::x)) (stringp (last acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-remove (implies (stringp acl2::x) (stringp (remove acl2::a acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-revappend (equal (stringp (revappend acl2::x acl2::y)) (and (stringp (list-fix acl2::x)) (stringp acl2::y))) :rule-classes ((:rewrite)))