Basic equivalence relation for outcome structures.
Function:
(defun outcome-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (outcomep acl2::x) (outcomep acl2::y)))) (equal (outcome-fix acl2::x) (outcome-fix acl2::y)))
Theorem:
(defthm outcome-equiv-is-an-equivalence (and (booleanp (outcome-equiv x y)) (outcome-equiv x x) (implies (outcome-equiv x y) (outcome-equiv y x)) (implies (and (outcome-equiv x y) (outcome-equiv y z)) (outcome-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm outcome-equiv-implies-equal-outcome-fix-1 (implies (outcome-equiv acl2::x x-equiv) (equal (outcome-fix acl2::x) (outcome-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm outcome-fix-under-outcome-equiv (outcome-equiv (outcome-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-outcome-fix-1-forward-to-outcome-equiv (implies (equal (outcome-fix acl2::x) acl2::y) (outcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-outcome-fix-2-forward-to-outcome-equiv (implies (equal acl2::x (outcome-fix acl2::y)) (outcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm outcome-equiv-of-outcome-fix-1-forward (implies (outcome-equiv (outcome-fix acl2::x) acl2::y) (outcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm outcome-equiv-of-outcome-fix-2-forward (implies (outcome-equiv acl2::x (outcome-fix acl2::y)) (outcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)