Basic equivalence relation for binding structures.
Function:
(defun binding-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (bindingp acl2::x) (bindingp acl2::y)))) (equal (binding-fix acl2::x) (binding-fix acl2::y)))
Theorem:
(defthm binding-equiv-is-an-equivalence (and (booleanp (binding-equiv x y)) (binding-equiv x x) (implies (binding-equiv x y) (binding-equiv y x)) (implies (and (binding-equiv x y) (binding-equiv y z)) (binding-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm binding-equiv-implies-equal-binding-fix-1 (implies (binding-equiv acl2::x x-equiv) (equal (binding-fix acl2::x) (binding-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm binding-fix-under-binding-equiv (binding-equiv (binding-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-binding-fix-1-forward-to-binding-equiv (implies (equal (binding-fix acl2::x) acl2::y) (binding-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-binding-fix-2-forward-to-binding-equiv (implies (equal acl2::x (binding-fix acl2::y)) (binding-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm binding-equiv-of-binding-fix-1-forward (implies (binding-equiv (binding-fix acl2::x) acl2::y) (binding-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm binding-equiv-of-binding-fix-2-forward (implies (binding-equiv acl2::x (binding-fix acl2::y)) (binding-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)