Basic equivalence relation for transform-argument structures.
Function:
(defun transform-argument-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (transform-argumentp acl2::x) (transform-argumentp acl2::y)))) (equal (transform-argument-fix acl2::x) (transform-argument-fix acl2::y)))
Theorem:
(defthm transform-argument-equiv-is-an-equivalence (and (booleanp (transform-argument-equiv x y)) (transform-argument-equiv x x) (implies (transform-argument-equiv x y) (transform-argument-equiv y x)) (implies (and (transform-argument-equiv x y) (transform-argument-equiv y z)) (transform-argument-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm transform-argument-equiv-implies-equal-transform-argument-fix-1 (implies (transform-argument-equiv acl2::x x-equiv) (equal (transform-argument-fix acl2::x) (transform-argument-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm transform-argument-fix-under-transform-argument-equiv (transform-argument-equiv (transform-argument-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-transform-argument-fix-1-forward-to-transform-argument-equiv (implies (equal (transform-argument-fix acl2::x) acl2::y) (transform-argument-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-transform-argument-fix-2-forward-to-transform-argument-equiv (implies (equal acl2::x (transform-argument-fix acl2::y)) (transform-argument-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm transform-argument-equiv-of-transform-argument-fix-1-forward (implies (transform-argument-equiv (transform-argument-fix acl2::x) acl2::y) (transform-argument-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm transform-argument-equiv-of-transform-argument-fix-2-forward (implies (transform-argument-equiv acl2::x (transform-argument-fix acl2::y)) (transform-argument-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)