All built-in axioms.
Definition:
(defaxiom bad-atom<=-total (implies (and (bad-atom x) (bad-atom y)) (or (bad-atom<= x y) (bad-atom<= y x))) :rule-classes nil)
Definition:
(defaxiom bad-atom<=-transitive (implies (and (bad-atom<= x y) (bad-atom<= y z) (bad-atom x) (bad-atom y) (bad-atom z)) (bad-atom<= x z)) :rule-classes ((:rewrite :match-free :all)))
Definition:
(defaxiom bad-atom<=-antisymmetric (implies (and (bad-atom x) (bad-atom y) (bad-atom<= x y) (bad-atom<= y x)) (equal x y)) :rule-classes nil)
Definition:
(defaxiom booleanp-bad-atom<= (or (equal (bad-atom<= x y) t) (equal (bad-atom<= x y) nil)) :rule-classes :type-prescription)
Definition:
(defaxiom completion-of-realpart (equal (realpart x) (if (acl2-numberp x) (realpart x) 0)) :rule-classes nil)
Definition:
(defaxiom completion-of-numerator (equal (numerator x) (if (rationalp x) (numerator x) 0)) :rule-classes nil)
Definition:
(defaxiom completion-of-intern-in-package-of-symbol (equal (intern-in-package-of-symbol x y) (if (and (stringp x) (symbolp y)) (intern-in-package-of-symbol x y) nil)) :rule-classes nil)
Definition:
(defaxiom completion-of-imagpart (equal (imagpart x) (if (acl2-numberp x) (imagpart x) 0)) :rule-classes nil)
Definition:
(defaxiom completion-of-denominator (equal (denominator x) (if (rationalp x) (denominator x) 1)) :rule-classes nil)
Definition:
(defaxiom completion-of-coerce (equal (coerce x y) (cond ((equal y 'list) (if (stringp x) (coerce x 'list) nil)) (t (coerce (make-character-list x) 'string)))) :rule-classes nil)
Definition:
(defaxiom completion-of-complex (equal (complex x y) (complex (if (real/rationalp x) x 0) (if (real/rationalp y) y 0))) :rule-classes nil)
Definition:
(defaxiom completion-of-code-char (equal (code-char x) (if (and (integerp x) (>= x 0) (< x 256)) (code-char x) *null-char*)) :rule-classes nil)
Definition:
(defaxiom completion-of-char-code (equal (char-code x) (if (characterp x) (char-code x) 0)) :rule-classes nil)
Definition:
(defaxiom completion-of-cdr (equal (cdr x) (cond ((consp x) (cdr x)) (t nil))) :rule-classes nil)
Definition:
(defaxiom completion-of-car (equal (car x) (cond ((consp x) (car x)) (t nil))) :rule-classes nil)
Definition:
(defaxiom completion-of-< (equal (< x y) (if (and (real/rationalp x) (real/rationalp y)) (< x y) (let ((x1 (if (acl2-numberp x) x 0)) (y1 (if (acl2-numberp y) y 0))) (or (< (realpart x1) (realpart y1)) (and (equal (realpart x1) (realpart y1)) (< (imagpart x1) (imagpart y1))))))) :rule-classes nil)
Definition:
(defaxiom completion-of-unary-/ (equal (/ x) (if (and (acl2-numberp x) (not (equal x 0))) (/ x) 0)) :rule-classes nil)
Definition:
(defaxiom completion-of-unary-minus (equal (- x) (if (acl2-numberp x) (- x) 0)) :rule-classes nil)
Definition:
(defaxiom completion-of-* (equal (* x y) (if (acl2-numberp x) (if (acl2-numberp y) (* x y) 0) 0)) :rule-classes nil)
Definition:
(defaxiom completion-of-+ (equal (+ x y) (if (acl2-numberp x) (if (acl2-numberp y) (+ x y) x) (if (acl2-numberp y) y 0))) :rule-classes nil)
Definition:
(defaxiom completion-of-symbol-package-name (equal (symbol-package-name x) (if (symbolp x) (symbol-package-name x) "")) :rule-classes nil)
Definition:
(defaxiom completion-of-symbol-name (equal (symbol-name x) (if (symbolp x) (symbol-name x) "")) :rule-classes nil)
Definition:
(defaxiom char-code-code-char-is-identity (implies (and (integerp n) (<= 0 n) (< n 256)) (equal (char-code (code-char n)) n)))
Definition:
(defaxiom code-char-char-code-is-identity (implies (characterp c) (equal (code-char (char-code c)) c)))
Definition:
(defaxiom code-char-type (characterp (code-char n)) :rule-classes :type-prescription)
Definition:
(defaxiom char-code-linear (< (char-code x) 256) :rule-classes :linear)
Definition:
(defaxiom nil-is-not-circular (equal nil (intern-in-package-of-symbol (coerce (cons #\N (cons #\I (cons #\L 0))) 'string) 'string)) :rule-classes nil)
Definition:
(defaxiom string-is-not-circular (equal 'string (intern-in-package-of-symbol (coerce (cons #\S (cons #\T (cons #\R (cons #\I (cons #\N (cons #\G 0)))))) (cons #\S (cons #\T (cons #\R (cons #\I (cons #\N (cons #\G 0))))))) (intern-in-package-of-symbol 0 0))) :rule-classes nil)
Definition:
(defaxiom keyword-package (equal (pkg-imports "KEYWORD") nil))
Definition:
(defaxiom acl2-package (equal (pkg-imports "ACL2") *common-lisp-symbols-from-main-lisp-package*))
Definition:
(defaxiom acl2-output-channel-package (equal (pkg-imports "ACL2-OUTPUT-CHANNEL") nil))
Definition:
(defaxiom acl2-input-channel-package (equal (pkg-imports "ACL2-INPUT-CHANNEL") nil))
Definition:
(defaxiom completion-of-pkg-imports (equal (pkg-imports x) (if (stringp x) (pkg-imports x) nil)) :rule-classes nil)
Definition:
(defaxiom no-duplicatesp-eq-pkg-imports (no-duplicatesp-eq (pkg-imports pkg)) :rule-classes :rewrite)
Definition:
(defaxiom symbol-listp-pkg-imports (symbol-listp (pkg-imports pkg)) :rule-classes ((:forward-chaining :trigger-terms ((pkg-imports pkg)))))
Definition:
(defaxiom intern-in-package-of-symbol-is-identity (implies (and (stringp x) (symbolp y) (member-symbol-name x (pkg-imports (symbol-package-name y)))) (equal (intern-in-package-of-symbol x y) (car (member-symbol-name x (pkg-imports (symbol-package-name y)))))))
Definition:
(defaxiom symbol-package-name-intern-in-package-of-symbol (implies (and (stringp x) (symbolp y) (not (member-symbol-name x (pkg-imports (symbol-package-name y))))) (equal (symbol-package-name (intern-in-package-of-symbol x y)) (symbol-package-name y))))
Definition:
(defaxiom symbol-name-intern-in-package-of-symbol (implies (and (stringp s) (symbolp any-symbol)) (equal (symbol-name (intern-in-package-of-symbol s any-symbol)) s)))
Definition:
(defaxiom symbol-package-name-pkg-witness-name (equal (symbol-package-name (pkg-witness pkg-name)) (if (and (stringp pkg-name) (not (equal pkg-name ""))) pkg-name "ACL2")))
Definition:
(defaxiom symbol-name-pkg-witness (equal (symbol-name (pkg-witness pkg-name)) *pkg-witness-name*))
Definition:
(defaxiom intern-in-package-of-symbol-symbol-name (implies (and (symbolp x) (equal (symbol-package-name x) (symbol-package-name y))) (equal (intern-in-package-of-symbol (symbol-name x) y) x)))
Definition:
(defaxiom symbolp-pkg-witness (symbolp (pkg-witness x)) :rule-classes :type-prescription)
Definition:
(defaxiom symbolp-intern-in-package-of-symbol (symbolp (intern-in-package-of-symbol x y)) :rule-classes :type-prescription)
Definition:
(defaxiom stringp-symbol-package-name (stringp (symbol-package-name x)) :rule-classes :type-prescription)
Definition:
(defaxiom character-listp-coerce (character-listp (coerce str 'list)) :rule-classes (:rewrite (:forward-chaining :trigger-terms ((coerce str 'list)))))
Definition:
(defaxiom coerce-inverse-2 (implies (stringp x) (equal (coerce (coerce x 'list) 'string) x)))
Definition:
(defaxiom coerce-inverse-1 (implies (character-listp x) (equal (coerce (coerce x 'string) 'list) x)))
Definition:
(defaxiom characterp-return (characterp #\Return) :rule-classes nil)
Definition:
(defaxiom characterp-rubout (characterp #\Rubout) :rule-classes nil)
Definition:
(defaxiom characterp-tab (characterp #\Tab) :rule-classes nil)
Definition:
(defaxiom characterp-page (characterp #\Page) :rule-classes nil)
Definition:
(defaxiom booleanp-characterp (booleanp (characterp x)) :rule-classes nil)
Definition:
(defaxiom lowest-terms (implies (and (integerp n) (rationalp x) (integerp r) (integerp q) (< 0 n) (equal (numerator x) (* n r)) (equal (denominator x) (* n q))) (equal n 1)) :rule-classes nil)
Definition:
(defaxiom integer-step (implies (integerp x) (and (integerp (+ x 1)) (integerp (+ x -1)))) :rule-classes nil)
Definition:
(defaxiom integer-1 (integerp 1) :rule-classes nil)
Definition:
(defaxiom integer-0 (integerp 0) :rule-classes nil)
Definition:
(defaxiom imagpart-complex (implies (and (real/rationalp x) (real/rationalp y)) (equal (imagpart (complex x y)) y)))
Definition:
(defaxiom realpart-complex (implies (and (real/rationalp x) (real/rationalp y)) (equal (realpart (complex x y)) x)))
Definition:
(defaxiom realpart-imagpart-elim (implies (acl2-numberp x) (equal (complex (realpart x) (imagpart x)) x)) :rule-classes (:rewrite :elim))
Definition:
(defaxiom nonzero-imagpart (implies (complex/complex-rationalp x) (not (equal 0 (imagpart x)))) :rule-classes nil)
Definition:
(defaxiom complex-definition (implies (and (real/rationalp x) (real/rationalp y)) (equal (complex x y) (+ x (* #C(0 1) y)))))
Definition:
(defaxiom complex-implies1 (and (real/rationalp (realpart x)) (real/rationalp (imagpart x))) :rule-classes nil)
Definition:
(defaxiom integer-implies-rational (implies (integerp x) (rationalp x)) :rule-classes nil)
Definition:
(defaxiom rational-implies2 (implies (rationalp x) (equal (* (/ (denominator x)) (numerator x)) x)))
Definition:
(defaxiom rational-implies1 (implies (rationalp x) (and (integerp (denominator x)) (integerp (numerator x)) (< 0 (denominator x)))) :rule-classes nil)
Definition:
(defaxiom positive (and (implies (and (< 0 x) (< 0 y)) (< 0 (+ x y))) (implies (and (real/rationalp x) (real/rationalp y) (< 0 x) (< 0 y)) (< 0 (* x y)))) :rule-classes nil)
Definition:
(defaxiom trichotomy (and (implies (acl2-numberp x) (or (< 0 x) (equal x 0) (< 0 (- x)))) (or (not (< 0 x)) (not (< 0 (- x))))) :rule-classes nil)
Definition:
(defaxiom zero (not (< 0 0)) :rule-classes nil)
Definition:
(defaxiom <-on-others (equal (< x y) (< (+ x (- y)) 0)) :rule-classes nil)
Definition:
(defaxiom distributivity (equal (* x (+ y z)) (+ (* x y) (* x z))))
Definition:
(defaxiom inverse-of-* (implies (and (acl2-numberp x) (not (equal x 0))) (equal (* x (/ x)) 1)))
Definition:
(defaxiom unicity-of-1 (equal (* 1 x) (fix x)))
Definition:
(defaxiom commutativity-of-* (equal (* x y) (* y x)))
Definition:
(defaxiom associativity-of-* (equal (* (* x y) z) (* x (* y z))))
Definition:
(defaxiom inverse-of-+ (equal (+ x (- x)) 0))
Definition:
(defaxiom unicity-of-0 (equal (+ 0 x) (fix x)))
Definition:
(defaxiom commutativity-of-+ (equal (+ x y) (+ y x)))
Definition:
(defaxiom associativity-of-+ (equal (+ (+ x y) z) (+ x (+ y z))))
Definition:
(defaxiom closure (and (acl2-numberp (+ x y)) (acl2-numberp (* x y)) (acl2-numberp (- x)) (acl2-numberp (/ x))) :rule-classes nil)
Definition:
(defaxiom nonnegative-product (implies (real/rationalp x) (and (real/rationalp (* x x)) (<= 0 (* x x)))) :rule-classes ((:type-prescription :typed-term (* x x))))
Definition:
(defaxiom cons-equal (equal (equal (cons x1 y1) (cons x2 y2)) (and (equal x1 x2) (equal y1 y2))))
Definition:
(defaxiom cdr-cons (equal (cdr (cons x y)) y))
Definition:
(defaxiom car-cons (equal (car (cons x y)) x))
Definition:
(defaxiom car-cdr-elim (implies (consp x) (equal (cons (car x) (cdr x)) x)) :rule-classes :elim)