Evaluation semantics of equal.
Function:
(defun eval-equal (x y) (declare (xargs :guard (and (valuep x) (valuep y)))) (let ((__function__ 'eval-equal)) (declare (ignorable __function__)) (lift-value (value-equiv x y))))
Theorem:
(defthm valuep-of-eval-equal (b* ((result (eval-equal x y))) (valuep result)) :rule-classes :rewrite)
Theorem:
(defthm eval-equal-of-value-fix-x (equal (eval-equal (value-fix x) y) (eval-equal x y)))
Theorem:
(defthm eval-equal-value-equiv-congruence-on-x (implies (value-equiv x x-equiv) (equal (eval-equal x y) (eval-equal x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm eval-equal-of-value-fix-y (equal (eval-equal x (value-fix y)) (eval-equal x y)))
Theorem:
(defthm eval-equal-value-equiv-congruence-on-y (implies (value-equiv y y-equiv) (equal (eval-equal x y) (eval-equal x y-equiv))) :rule-classes :congruence)