(rvm16 addr x86) → (mv * * x86)
Function:
(defun rvm16$inline (addr x86) (declare (xargs :stobjs (x86))) (declare (type (signed-byte 48) addr)) (if (mbt (canonical-address-p addr)) (let* ((1+addr (the (signed-byte 49) (1+ (the (signed-byte 48) addr))))) (if (mbe :logic (canonical-address-p (1+ addr)) :exec (< (the (signed-byte 49) 1+addr) 140737488355328)) (b* (((the (unsigned-byte 8) byte0) (memi (n48 addr) x86)) ((the (unsigned-byte 8) byte1) (memi (n48 1+addr) x86))) (mv nil (the (unsigned-byte 16) (logior (the (unsigned-byte 16) (ash byte1 8)) byte0)) x86)) (mv 'rvm16 0 x86))) (mv 'rvm16 0 x86)))
Theorem:
(defthm rvm16-no-error (implies (and (canonical-address-p addr) (canonical-address-p (+ 1 addr))) (equal (mv-nth 0 (rvm16 addr x86)) nil)))
Theorem:
(defthm n16p-mv-nth-1-rvm16 (unsigned-byte-p 16 (mv-nth 1 (rvm16 addr x86))) :rule-classes (:rewrite (:type-prescription :corollary (natp (mv-nth 1 (rvm16 addr x86))) :hints (("Goal" :in-theory '(unsigned-byte-p integer-range-p natp)))) (:linear :corollary (and (<= 0 (mv-nth 1 (rvm16 addr x86))) (< (mv-nth 1 (rvm16 addr x86)) 65536)) :hints (("Goal" :in-theory '(unsigned-byte-p integer-range-p (:e expt)))))))
Theorem:
(defthm x86p-mv-nth-2-rvm16-unchanged (equal (mv-nth 2 (rvm16 addr x86)) x86))
Theorem:
(defthm xr-rvm16 (equal (xr fld index (mv-nth 2 (rvm16 addr x86))) (xr fld index x86)))
Theorem:
(defthm rvm16-xw-values (implies (not (equal fld :mem)) (and (equal (mv-nth 0 (rvm16 addr (xw fld index value x86))) (mv-nth 0 (rvm16 addr x86))) (equal (mv-nth 1 (rvm16 addr (xw fld index value x86))) (mv-nth 1 (rvm16 addr x86))))))