Fixing function for elf64_sym bit structures.
(elf64_sym-fix x) → fty::fixed
Function:
(defun elf64_sym-fix (x) (declare (xargs :guard (elf64_sym-p x))) (let ((__function__ 'elf64_sym-fix)) (declare (ignorable __function__)) (mbe :logic (loghead 192 x) :exec x)))
Theorem:
(defthm elf64_sym-p-of-elf64_sym-fix (b* ((fty::fixed (elf64_sym-fix x))) (elf64_sym-p fty::fixed)) :rule-classes :rewrite)
Theorem:
(defthm elf64_sym-fix-when-elf64_sym-p (implies (elf64_sym-p x) (equal (elf64_sym-fix x) x)))
Function:
(defun elf64_sym-equiv$inline (x y) (declare (xargs :guard (and (elf64_sym-p x) (elf64_sym-p y)))) (equal (elf64_sym-fix x) (elf64_sym-fix y)))
Theorem:
(defthm elf64_sym-equiv-is-an-equivalence (and (booleanp (elf64_sym-equiv x y)) (elf64_sym-equiv x x) (implies (elf64_sym-equiv x y) (elf64_sym-equiv y x)) (implies (and (elf64_sym-equiv x y) (elf64_sym-equiv y z)) (elf64_sym-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm elf64_sym-equiv-implies-equal-elf64_sym-fix-1 (implies (elf64_sym-equiv x x-equiv) (equal (elf64_sym-fix x) (elf64_sym-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm elf64_sym-fix-under-elf64_sym-equiv (elf64_sym-equiv (elf64_sym-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))