Division of a value of type
Function:
(defun div-ulong-uint (x y) (declare (xargs :guard (and (ulongp x) (uintp y) (div-ulong-uint-okp x y)))) (div-ulong-ulong x (ulong-from-uint y)))
Theorem:
(defthm ulongp-of-div-ulong-uint (ulongp (div-ulong-uint x y)))
Theorem:
(defthm div-ulong-uint-of-ulong-fix-x (equal (div-ulong-uint (ulong-fix x) y) (div-ulong-uint x y)))
Theorem:
(defthm div-ulong-uint-ulong-equiv-congruence-on-x (implies (ulong-equiv x x-equiv) (equal (div-ulong-uint x y) (div-ulong-uint x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm div-ulong-uint-of-uint-fix-y (equal (div-ulong-uint x (uint-fix y)) (div-ulong-uint x y)))
Theorem:
(defthm div-ulong-uint-uint-equiv-congruence-on-y (implies (uint-equiv y y-equiv) (equal (div-ulong-uint x y) (div-ulong-uint x y-equiv))) :rule-classes :congruence)