Build an array of type
(slong-array-of elements) → array
Function:
(defun slong-array-of (elements) (declare (xargs :guard (slong-listp elements))) (declare (xargs :guard (consp elements))) (let ((__function__ 'slong-array-of)) (declare (ignorable __function__)) (slong-array (type-slong) elements)))
Theorem:
(defthm slong-arrayp-of-slong-array-of (b* ((array (slong-array-of elements))) (slong-arrayp array)) :rule-classes :rewrite)
Theorem:
(defthm slong-array-of-of-slong-array->elements (equal (slong-array-of (slong-array->elements array)) (slong-array-fix array)))
Theorem:
(defthm slong-array-of-alt-def (implies (and (slong-listp elems) (consp elems)) (equal (slong-array-of elems) (make-value-array :elemtype (type-slong) :elements elems))))
Theorem:
(defthm slong-array-of-of-slong-list-fix-elements (equal (slong-array-of (slong-list-fix elements)) (slong-array-of elements)))
Theorem:
(defthm slong-array-of-slong-list-equiv-congruence-on-elements (implies (slong-list-equiv elements elements-equiv) (equal (slong-array-of elements) (slong-array-of elements-equiv))) :rule-classes :congruence)