Basic equivalence relation for fsuffix structures.
Function:
(defun fsuffix-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fsuffixp acl2::x) (fsuffixp acl2::y)))) (equal (fsuffix-fix acl2::x) (fsuffix-fix acl2::y)))
Theorem:
(defthm fsuffix-equiv-is-an-equivalence (and (booleanp (fsuffix-equiv x y)) (fsuffix-equiv x x) (implies (fsuffix-equiv x y) (fsuffix-equiv y x)) (implies (and (fsuffix-equiv x y) (fsuffix-equiv y z)) (fsuffix-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fsuffix-equiv-implies-equal-fsuffix-fix-1 (implies (fsuffix-equiv acl2::x x-equiv) (equal (fsuffix-fix acl2::x) (fsuffix-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fsuffix-fix-under-fsuffix-equiv (fsuffix-equiv (fsuffix-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fsuffix-fix-1-forward-to-fsuffix-equiv (implies (equal (fsuffix-fix acl2::x) acl2::y) (fsuffix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fsuffix-fix-2-forward-to-fsuffix-equiv (implies (equal acl2::x (fsuffix-fix acl2::y)) (fsuffix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fsuffix-equiv-of-fsuffix-fix-1-forward (implies (fsuffix-equiv (fsuffix-fix acl2::x) acl2::y) (fsuffix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fsuffix-equiv-of-fsuffix-fix-2-forward (implies (fsuffix-equiv acl2::x (fsuffix-fix acl2::y)) (fsuffix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)