Basic equivalence relation for eprefix structures.
Function:
(defun eprefix-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (eprefixp acl2::x) (eprefixp acl2::y)))) (equal (eprefix-fix acl2::x) (eprefix-fix acl2::y)))
Theorem:
(defthm eprefix-equiv-is-an-equivalence (and (booleanp (eprefix-equiv x y)) (eprefix-equiv x x) (implies (eprefix-equiv x y) (eprefix-equiv y x)) (implies (and (eprefix-equiv x y) (eprefix-equiv y z)) (eprefix-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm eprefix-equiv-implies-equal-eprefix-fix-1 (implies (eprefix-equiv acl2::x x-equiv) (equal (eprefix-fix acl2::x) (eprefix-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm eprefix-fix-under-eprefix-equiv (eprefix-equiv (eprefix-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-eprefix-fix-1-forward-to-eprefix-equiv (implies (equal (eprefix-fix acl2::x) acl2::y) (eprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-eprefix-fix-2-forward-to-eprefix-equiv (implies (equal acl2::x (eprefix-fix acl2::y)) (eprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm eprefix-equiv-of-eprefix-fix-1-forward (implies (eprefix-equiv (eprefix-fix acl2::x) acl2::y) (eprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm eprefix-equiv-of-eprefix-fix-2-forward (implies (eprefix-equiv acl2::x (eprefix-fix acl2::y)) (eprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)