Fixing function for ident structures.
Function:
(defun ident-fix$inline (x) (declare (xargs :guard (identp x))) (let ((__function__ 'ident-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((unwrap (identity (cdr (std::da-nth 0 x))))) (list (cons 'unwrap unwrap))) :exec x)))
Theorem:
(defthm identp-of-ident-fix (b* ((new-x (ident-fix$inline x))) (identp new-x)) :rule-classes :rewrite)
Theorem:
(defthm ident-fix-when-identp (implies (identp x) (equal (ident-fix x) x)))
Function:
(defun ident-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (identp acl2::x) (identp acl2::y)))) (equal (ident-fix acl2::x) (ident-fix acl2::y)))
Theorem:
(defthm ident-equiv-is-an-equivalence (and (booleanp (ident-equiv x y)) (ident-equiv x x) (implies (ident-equiv x y) (ident-equiv y x)) (implies (and (ident-equiv x y) (ident-equiv y z)) (ident-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ident-equiv-implies-equal-ident-fix-1 (implies (ident-equiv acl2::x x-equiv) (equal (ident-fix acl2::x) (ident-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ident-fix-under-ident-equiv (ident-equiv (ident-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ident-fix-1-forward-to-ident-equiv (implies (equal (ident-fix acl2::x) acl2::y) (ident-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ident-fix-2-forward-to-ident-equiv (implies (equal acl2::x (ident-fix acl2::y)) (ident-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ident-equiv-of-ident-fix-1-forward (implies (ident-equiv (ident-fix acl2::x) acl2::y) (ident-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ident-equiv-of-ident-fix-2-forward (implies (ident-equiv acl2::x (ident-fix acl2::y)) (ident-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)