Basic equivalence relation for stmt structures.
Function:
(defun stmt-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (stmtp acl2::x) (stmtp acl2::y)))) (equal (stmt-fix acl2::x) (stmt-fix acl2::y)))
Theorem:
(defthm stmt-equiv-is-an-equivalence (and (booleanp (stmt-equiv x y)) (stmt-equiv x x) (implies (stmt-equiv x y) (stmt-equiv y x)) (implies (and (stmt-equiv x y) (stmt-equiv y z)) (stmt-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm stmt-equiv-implies-equal-stmt-fix-1 (implies (stmt-equiv acl2::x x-equiv) (equal (stmt-fix acl2::x) (stmt-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm stmt-fix-under-stmt-equiv (stmt-equiv (stmt-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-stmt-fix-1-forward-to-stmt-equiv (implies (equal (stmt-fix acl2::x) acl2::y) (stmt-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-stmt-fix-2-forward-to-stmt-equiv (implies (equal acl2::x (stmt-fix acl2::y)) (stmt-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm stmt-equiv-of-stmt-fix-1-forward (implies (stmt-equiv (stmt-fix acl2::x) acl2::y) (stmt-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm stmt-equiv-of-stmt-fix-2-forward (implies (stmt-equiv acl2::x (stmt-fix acl2::y)) (stmt-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)