Basic equivalence relation for strunispec structures.
Function:
(defun strunispec-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (strunispecp acl2::x) (strunispecp acl2::y)))) (equal (strunispec-fix acl2::x) (strunispec-fix acl2::y)))
Theorem:
(defthm strunispec-equiv-is-an-equivalence (and (booleanp (strunispec-equiv x y)) (strunispec-equiv x x) (implies (strunispec-equiv x y) (strunispec-equiv y x)) (implies (and (strunispec-equiv x y) (strunispec-equiv y z)) (strunispec-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm strunispec-equiv-implies-equal-strunispec-fix-1 (implies (strunispec-equiv acl2::x x-equiv) (equal (strunispec-fix acl2::x) (strunispec-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm strunispec-fix-under-strunispec-equiv (strunispec-equiv (strunispec-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-strunispec-fix-1-forward-to-strunispec-equiv (implies (equal (strunispec-fix acl2::x) acl2::y) (strunispec-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-strunispec-fix-2-forward-to-strunispec-equiv (implies (equal acl2::x (strunispec-fix acl2::y)) (strunispec-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm strunispec-equiv-of-strunispec-fix-1-forward (implies (strunispec-equiv (strunispec-fix acl2::x) acl2::y) (strunispec-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm strunispec-equiv-of-strunispec-fix-2-forward (implies (strunispec-equiv acl2::x (strunispec-fix acl2::y)) (strunispec-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)